Учебные материалы


Квантовый компьютер



Карта сайта rvionso.ru

Квантовая механика славится своими парадоксами. Волны ведут себя как частицы, а частицы – как волны, и можно находиться в двух местах одновременно. Пожалуй, не так уж удивительно, что на микроуровне вещи ведут себя странным и парадоксальным образом; в конце концов, мы привыкли воспринимать объекты, которые по размеру намного больше отдельных атомов. Но парадоксы квантового мира все же сбивают нас с толку. Нильс Бор, отец квантовой механики, как-то заметил: если кто-то считает, будто может разбираться в квантовой механике, не испытывая при этом головокружения, то на самом деле он ее не понимает.

Квантовые компьютеры используют «квантовую странность», чтобы выполнять задачи, слишком сложные для обычных компьютеров. Квантовый бит, или «кубит», может находиться в состоянии и 0, и 1 в одно и то же время , в то время как классический бит может содержать только 0 или только 1. Поэтому квантовый компьютер может выполнять миллионы вычислений одновременно.

Квантовые компьютеры обрабатывают информацию, хранящуюся в отдельных атомах, электронах и фотонах. Квантовый компьютер – это демократия в мире информации: каждый атом, электрон и фотон равным образом участвуют в процессах хранения и обработки информации. И эта фундаментальная демократия информации не ограничена квантовыми компьютерами. Все физические системы в основе своей являются квантово-механическими, и все физические системы записывают, содержат и обрабатывают информацию. Мир построен из элементарных частиц – электронов, фотонов, кварков, и каждый элементарный фрагмент физической системы запечатлевает часть информации: одна частица – один бит. Взаимодействуя между собой, эти фрагменты постепенно преобразуют и обрабатывают информацию, бит за битом. Каждое столкновение элементарных частиц действует как простая логическая операция, сокращенно «оп».

Чтобы осознать любую физическую систему с точки зрения ее битов, нужно хорошо понимать механизм, посредством которого каждый элемент этой системы записывает и обрабатывает информацию. Если мы выясним, как это делает квантовый компьютер, то узнаем также, как это делает физическая система.

Идею такого компьютера предложили в начале 1980-х гг. Пол Бенев, Ричард Фейнман, Дэвид Дойч и другие. В то время квантовые компьютеры были чисто абстрактной концепцией: никто не знал, как можно их создать. В начале 1990-х я показал, как это можно сделать с использованием существующих экспериментальных методов. В течение десяти последних лет я трудился с некоторыми из лучших ученых и инженеров мира, чтобы разработать и изготовить квантовые компьютеры и использовать их.

Есть множество веских причин для того, чтобы создать квантовый компьютер. Прежде всего, мы можем это сделать. Квантовые технологии – технологии управления материей на уровне атомов – в последние годы получили замечательное развитие. Сейчас у нас есть достаточно стабильные лазеры, довольно точные методы производства и быстрая электроника – все это позволяет выполнять вычисления на уровне атомов.

Вторая причина заключается в том, что нам нужно научиться создавать квантовые компьютеры, по крайней мере если мы хотим, чтобы наши компьютеры становились все более быстрыми и мощными. На протяжении полувека вычислительная мощность компьютеров удваивалась каждые полтора года. Этот взрыв называется «законом Мура», в честь Гордона Мура, впоследствии ставшего топ-менеджером компании Intel, который указал на экспоненциальный характер роста еще в 1960-е. Закон Мура – это не закон природы, а свидетельство человеческой изобретательности. Каждые восемнадцать месяцев компьютеры становятся в два раза быстрее, потому что каждые восемнадцать месяцев инженеры находят способ уменьшить вдвое размер соединений и логических элементов, из которых они состоят. Каждый раз, когда размер основных компонентов компьютера уменьшается вдвое, на чипе того же размера становится возможно разместить в два раза больше элементов. В результате компьютер оказывается вдвое мощнее своего предшественника, созданного полтора года назад.

Если спроецировать закон Мура на будущее, мы увидим, что размер соединений и логических элементов, из которых состоят компьютеры, лет через сорок должен будет достичь уровня атомов; следовательно, если мы хотим, чтобы закон Мура действовал и дальше, нам придется научиться создавать компьютеры, работающие на квантовом уровне. Квантовые компьютеры представляют собой последний рубеж миниатюризации.

Загрузка...

Квантовые компьютеры, которые сделали мы с коллегами, уже достигли этой цели: каждый атом содержит один бит. Но сегодня мы можем создавать совсем небольшие квантовые компьютеры – и по размеру, и по вычислительной силе. Самые большие квантовые компьютеры общего назначения, существующие в настоящий момент, содержат от семи до десяти квантовых битов и могут выполнять тысячи квантовых логических операций в секунду[1]. (Для сравнения, обычный настольный персональный компьютер может содержать триллионы битов и выполнять миллиарды обычных, классических логических операций в секунду.) Мы уже научились делать компьютеры с элементами размером с атом, но еще не умеем делать большие компьютеры с элементами такого размера. Первые квантовые компьютеры появились десять лет назад, и количество битов, которые они могут содержать, удваивается почти раз в два года. Даже если эта скорость сохранится, пройдет еще сорок лет, прежде чем квантовые компьютеры смогут сравняться с сегодняшними классическими по количеству битов. Квантовым компьютерам предстоит еще долгий путь до обычной «персоналки».

Третья причина для создания квантовых компьютеров заключается в том, что они позволяют нам понять, как Вселенная записывает и обрабатывает информацию. Один из лучших способов понять закон природы – это создать машину, которая бы иллюстрировала этот закон. Часто мы сначала создаем машину, а законы возникают позже. Колесо и волчок появились за много тысячелетий до того, как был открыт закон сохранения момента импульса; брошенный камень – до того, как Галилей открыл законы движения; призма и телескоп – раньше оптической теории Ньютона; паровой двигатель изобрели задолго до того, как Джеймс Уатт сконструировал свой регулятор, а Сади Карно открыл второй закон термодинамики.

А поскольку квантовую механику так трудно понять, было бы здорово создать машину, которая бы воплощала в себе ее законы! Взаимодействуя с ней, можно было бы на практике увидеть, как «работает» квантовая механика; так ребенок, играющий с волчком, интуитивно усваивает понятие и свойства момента импульса, воплощенные в этой игрушке. Только практический опыт, возможность своими глазами наблюдать, как ведут себя атомы, позволит по-настоящему понять, что такое квантовая механика. «Игрушечные» квантовые компьютеры, которые мы научились делать сегодня, – это машины, позволяющие нам все больше и больше узнавать о том, как физические системы запечатлевают и обрабатывают информацию на квантово-механическом уровне.

Наконец, есть еще одна причина для создания квантовых компьютеров: это очень интересно. На страницах этой книги мы встретимся с некоторыми из лучших ученых и инженеров мира. Это Джефф Кимбл из Калифорнийского технологического института, конструктор первых в мире фотонных квантовых логических элементов; Дейв Вайнленд из Национального института стандартов и технологий, создавший самый первый простой квантовый компьютер; Ханс Моэй из Делфтского технологического университета, чья группа провела некоторые из самых ранних демонстраций квантовых битов в сверхпроводящих схемах; Дэвид Кори из Массачусетского технологического института, который построил первый молекулярный квантовый компьютер и чьи квантовые аналоговые компьютеры могут выполнять вычисления, для которых потребовался бы обычный компьютер, превышающий размерами саму Вселенную. Как только мы увидим, как работают квантовые компьютеры, мы сможем определить границы вычислительной способности Вселенной.

Язык природы

Совершая вычисления, Вселенная без труда создает запутанные и сложные структуры. Чтобы понять, как она вычисляет, а значит, чтобы понять эти сложные структуры, нужно выяснить, как она хранит и обрабатывает информацию. То есть изучить язык самой природы.

Я занимаюсь чем-то вроде «массажа» атомов. Я профессор квантово-механической техники в Массачусетском технологическом институте. Моя работа – делать «массаж» электронам, фотонам, атомам и молекулам, чтобы привести их в те особые состояния, в которых они превращаются в квантовые компьютеры и квантовые системы коммуникации. Атомы малы, но они сильны; эластичны, но чувствительны. С ними легко «говорить» (просто толкните стол – тем самым вы «заговорите» с миллиардами и миллиардами атомов), но их трудно «услышать» (думаю, вы не сможете мне сказать, что вам ответил стол, кроме «бум!»). Мы их не интересуем, они просто живут своей жизнью, занимаются своим делом, и так было всегда. Но если правильно сделать им массаж, то их можно очаровать. И они начнут делать для вас вычисления.

Атомы не одиноки в своей способности обрабатывать информацию. Фотоны (частицы света), фононы (частицы звука), квантовые точки (искусственные атомы), сверхпроводящие схемы – все эти микроскопические системы могут записывать информацию. И если вы говорите на их языке и вежливо задаете им вопросы, то они обработают эту информацию для вас. На каком языке говорят такие системы? Как и все физические системы, они реагируют на энергию, силу, импульс, на свет и звук, на электричество и силу тяжести. Физические системы говорят на языке, грамматику которого составляют законы физики. За последние десять лет мы изучили этот язык достаточно хорошо, чтобы говорить с атомами – чтобы убедить их выполнять вычисления и сообщать о результатах.

Трудно ли говорить «на языке атомов»? Чтобы пользоваться этим языком свободно, нужно учиться всю жизнь. Сам я владею им плохо по сравнению с другими учеными и квантовыми инженерами, с которыми вы встретитесь на страницах этой книги. Но поддерживать с атомами простую беседу не так уж трудно.

Как и все языки, «язык атомов» легче выучить, когда вы молоды. Мы с Полом Пенфилдом читаем курс лекций для первокурсников Массачусетского технологического института, он называется «Информация и энтропия». Цель этого курса, как и цель этой книги, – раскрыть фундаментальную роль, которую информация играет во Вселенной.

Пятьдесят лет назад первокурсники Массачусетского технологического института знали все о двигателях внутреннего сгорания, передачах и рычагах, трансмиссиях и шкивах. Двадцать пять лет назад они прекрасно разбирались в электронных лампах, транзисторах, любительских радиоприемниках и электронных схемах. Теперь они переполнены знаниями о компьютерах, дисководах, волоконной оптике, разбираются в пропускной способности линий и средствах сжатия музыкальных и графических файлов. Их предшественники жили в мире механики и электричества; они – в мире информации. Их предшественники уже знали много о силе и энергии, напряжении и заряде; а они очень много знают о битах и байтах. Наши первокурсники так хорошо разбираются в информационных технологиях, что мы, преподаватели, можем вести для них предметы, включая курс по квантовым вычислениям, которые раньше были по зубам только выпускникам. (Мои старшие коллеги с факультета машиностроения жалуются, что нынешние первокурсники никогда не держали в руках отвертки. Это неправда. Добрая половина из них умеет пользоваться отверткой, чтобы установить больше памяти в свой компьютер.)

В рамках научно-исследовательского проекта, который я вел при поддержке Национального научного фонда США, я разработал курс лекций для учеников первых и вторых классов средней школы – о том, как обрабатывается информация на микроуровнях. Даже шести– и семилетние дети сегодня очень много знают о компьютерах. Кажется, они не испытывают никаких затруднений с битами и байтами. Когда мы с ними играем в игру, где каждый берет на себя роль атома в квантовом компьютере, они делают это с легкостью и прекрасно понимают смысл своих действий.

Те, кто родился и вырос задолго до нынешней революции обработки информации, тоже прекрасно понимают разнообразие и все значение информации, не хуже наших переполненных битами детей. Неважно, сколько вам лет – к моменту, когда вы закончите читать эту книгу, вы будете знать, как можно попросить атомы выполнить простые вычисления, используя машины, которые уже есть во всем мире, а также грамматику языка природы.



edu 2018 год. Все права принадлежат их авторам! Главная